BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

NATURAL RESOURCES DEFENSE COUNCIL, PRAIRIE RIVERS NETWORK and SIERRA CLUB,)))
Petitioners,)
vs.) PCB 2013-17) (APPEAL FROM IEPA
ILLINOIS ENVIRONMENTAL PROTECTION) DECISION GRANTING
AGENCY and DYNEGY MIDWEST) NPDES PERMIT)
GENERATION, INC.,)
Respondents.)

NOTICE OF ELECTRONIC FILING

To: See Attached Service List

PLEASE TAKE NOTICE that on January 10, 2013, I electronically filed with the Clerk of the Pollution Control Board of the State of Illinois, c/o John T. Therriault, Assistant Clerk, James R. Thompson Center, 100 W. Randolph St., Ste. 11-500, Chicago, IL 60601, a SECOND SUPPLEMENT TO THE RECORD, a copy of which is attached hereto and herewith served upon you.

Respectfully submitted,

PEOPLE OF THE STATE OF ILLINOIS

LISA MADIGAN, Attorney General of the State of Illinois

MATTHEW J. DUNN, Chief Environmental Enforcement/Asbestos Litigation Division

Y: Kaec

Rachel R. Medina

Assistant Attorney General Environmental Bureau

500 South Second Street Springfield, Illinois 62706 217/782-9031 Dated: January 10, 2013

CERTIFICATE OF SERVICE

I hereby certify that I did on January 10, 2013, cause to be served by First Class Mail, with postage thereon fully prepaid, by depositing in a United States Post Office Box in Springfield, Illinois, a true and correct copy of the following instruments entitled NOTICE OF ELECTRONIC FILING and SECOND SUPPLEMENT TO THE RECORD upon the persons listed on the Service List.

Rachel R. Medina

Assistant Attorney General

This filing is submitted on recycled paper.

SERVICE LIST

Carol Webb
Hearing Officer
Illinois Pollution Control Board
1021 North Grand Avenue East
P.O. Box 190276
Springfield, IL 62794-9274
Sent by email to carol.webb@illinois.gov

Ann Alexander
Meleah Geertsma
Natural Resources Defense Council
2 North Riverside Plaza, Suite 2250
Chicago, IL 60606
Sent by email to aalexander@nrdc.org

Stephen Bonebrake
Daniel Deeb
Amy Antoniolli
SchiffHardin LLP
233 South Wacker Drive
Suite 6600
Chicago, IL 60606
Sent by email to aantoniolli@schiffhardin.com

BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

NATURAL RESOURCES DEFENSE COUNCIL, PRAIRIE RIVERS NETWORK, and SIERRA CLUB,)))
Petitioners,))
v.) PCB 2013 - 017) (APPEAL FROM IEPA) DECISION GRANTING
ILLINOIS ENVIRONMENTAL PROTECTION AGENCY and DYNEGY MIDWEST) NPDES PERMIT)
GENERATION, INC.,	j
Do an and auto)
Respondents.)

SECOND SUPPLEMENT TO THE RECORD

Respondent, ILLINOIS ENVIRONMENTAL PROTECTION AGENCY ("Illinois EPA"), in accordance with the procedural rules of the Illinois Pollution Control Board ("Illinois PCB") as set forth in 35 Ill. Adm. Code 105.212 and 105.116, hereby supplements the Record with the following documents:

Permit File Documents

- 66. Letter dated November 9, 2010, from Michael T. Lowder, Unit Manager, Leaking Underground Storage Tank Section, Division of Remediation Management, Bureau of Land, Illinois EPA to Illinois Power Company, regarding Leaking UST Incident No. 932233. (This letter is the attachment to Document #27 of the Record referenced as "SKMBT_42110041314190.pdf.")
- 67. Activated Carbon Injection: Effect on Simulated Fly Ash Sluice Water, Technical Updated, March 2007, P. Chu, EPRI Project Manager, Electric Power Research Institute.

In addition, please note that Document #60 of the Record is also "Attachment A" to Document #56 of the Record.

Respectfully submitted,

LISA MADIGAN, Attorney General of the State of Illinois,

MATTHEW J. DUNN, Chief Environmental Enforcement/Asbestos Litigation Division

Bv:

RACHEL R. MEDINA Environmental Bureau Assistant Attorney General

#6297171 500 South Second Street Springfield, Illinois 62706 217/782-9031 Dated: January <u>/0</u>, 2013

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

1021 North Grand Avenue East, P.O. Box 19276, Springfield, Illinois 62794-9276 ● (217) 782-2829 James R. Thompson Center, 100 West Randolph, Suite 11-300, Chicago, IL 60601 ● (312) 814-6026

PAT QUINN, GOVERNOR

Douglas P. Scott, Director

217/782-6762

CERTIFIED MAIL
7009 2820 0001 7494 6104

NOV 0 9 2010

Illinois Power Company 500 South 27TH Street Decatur, Illinois 62525

Re:

LPC #1250205003 -- Mason County

Havana/Illinois Power Co.

Rt. 78

Leaking UST Incident No. 932233 Leaking UST Technical File

Dear Owner/Operator:

The Illinois Environmental Protection Agency (Illinois EPA) has reviewed the file for the above-referenced incident. This review was conducted on November 4, 2010. Citations in this letter are from the Environmental Protection Act (Act), as amended by Public Act 92-0554 on June 24, 2002, and Public Act 96-0908 on June 8, 2010, and 35 Illinois Administrative Code (35 Ill. Adm. Code).

Based on the information currently in the Illinois EPA's possession, this incident is not subject to Title XVI of the Act or 35 Ill. Adm. Code 731. The incident was reported on August 19, 1993 due to a release from an underground oil transfer line which connected an aboveground tank to a dispensing pump. The release was not from an underground storage tank and therefore, the Illinois EPA Leaking Underground Storage Tank Section has no reporting requirements regarding this incident.

If you have any questions or require further assistance, please contact Mohammed Zillur Rahman at (217) 782-9848.

Sincerely,

Michael T. Lowder Unit Manager

Leaking Underground Storage Tank Section Division of Remediation Management Bureau of Land

Cc:

BOL File

RELEASABLE
NOV 1 0 2010
REVIEWER MD

Activated Carbon Injection: Effect on Simulated Fly Ash Sluice Water

1013314

Activated Carbon Injection: Effect on Fly Ash Sluice Water

Technical Update, March 2007

EPRI Project Manager

P. Chu

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES

THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI). NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) BELOW, NOR ANY PERSON ACTING ON BEHALF OF ANY OF THEM:

(A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I) WITH RESPECT TO THE USE OF ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, OR (II) THAT SUCH USE DOES NOT INFRINGE ON OR INTERFERE WITH PRIVATELY OWNED RIGHTS, INCLUDING ANY PARTY'S INTELLECTUAL PROPERTY, OR (III) THAT THIS DOCUMENT IS SUITABLE TO ANY PARTICULAR USER'S CIRCUMSTANCE; OR

(B) ASSUMES RESPONSIBILITY FOR ANY DAMAGES OR OTHER LIABILITY WHATSOEVER (INCLUDING ANY CONSEQUENTIAL DAMAGES, EVEN IF EPRI OR ANY EPRI REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES) RESULTING FROM YOUR SELECTION OR USE OF THIS DOCUMENT OR ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT.

ORGANIZATION(S) THAT PREPARED THIS DOCUMENT

CH2M HILL

This is an EPRI Technical Update report. A Technical Update report is intended as an informal report of continuing research, a meeting, or a topical study. It is not a final EPRI technical report.

NOTE

For further information about EPRI, call the EPRI Customer Assistance Center at 800.313.3774 or e-mail askepri@epri.com.

Electric Power Research Institute, EPRI, and TOGETHER...SHAPING THE FUTURE OF ELECTRICITY are registered service marks of the Electric Power Research Institute, Inc.

Copyright © 2007 Electric Power Research Institute, Inc. All rights reserved.

CITATIONS

This document was prepared by

CH2M HILL 155 Grand Avenue, Suite 1000 Oakland, CA 94612

Principal Investigators:

D. Seibold

D. Fink

T. Higgins

N. DelRio

B. Byers

This document describes research sponsored by the Electric Power Research Institute (EPRI).

This publication is a corporate document that should be cited in the literature in the following manner:

Activated Carbon Injection: Effect on Simulated Fly Ash Sluice Water, EPRI, Palo Alto, CA: 2007, 1013314.

SUMMARY

The primary objective of this study was to investigate the effect of activated carbon injection (ACI) for mercury flue gas control on the composition of the fly ash sluice water and ash pond settleability. If the fly ash and spent carbon are wet sluiced to an ash pond, carbon particles that do not settle in an ash pond may be a compliance concern for total suspended solids (TSS), mercury as well as any other trace element that may be volatile in the flue gas and is adsorbed onto the carbon particle. A series of laboratory tests were conducted to simulate fly ash sluicing and then settling of solids in an ash pond. This investigation was a preliminary review of a small number of samples intended to identify potential issues and guide future research.

Preliminary conclusions were drawn regarding TSS, volatile metals, bromine, arsenic speciation, and selenium speciation on the three pairs of fly ash (with and without carbon) analyzed in this study. Laboratory fly ash sluicing experiments followed by settling studies were conducted to simulate fly ash sluicing followed by solids removals in a settling ash pond. The limited results indicated that most of the carbon appeared to settle and TSS did not significantly increase in the fly ash sluice water with carbon. Therefore, the performance of fly ash ponds to remove TSS and carbon does not appear to be significantly impacted. Concentrations of volatile metals (mercury, selenium, and boron) in the sluice water did not appear to be affected by the carbon addition. Bromide, the reduced form of bromine (a chemical treatment for some carbon), was elevated in the fly ash sluice water generated from the fly ash/carbon mixture for both carbons tested (one with bromine enhancement and the second without any halogen enhancement). Arsenic and selenium were predominantly arsenate (+5) and selenite (+4), which is consistent with past fly ash sluice water samples.

CONTENTS

1 INTRODUCTION AND METHODOLOGY	1-1
Carbon Addition to Air Stream	1-1
Description of Simulated Sluicing Methodology Used	1-4
2 EFFECT ON SIMULATED FLY ASH SLUICE WATER AND ASH POND EFFLUENT	2-1
TSS	2-1
Volatile Trace Elements	2-2
Bromide	2-5
Other Parameters	2-6
Arsenic and Selenium Speciation	2-7
3 RECOMMENDED FUTURE RESEARCH	3-1
4 REFERENCES	4-1
APPENDIX DATA	Δ-1

FIGURES

Figure 1-1 Schematic of Activated Carbon Injection for Mercury Control	1-2
Figure 1-2 Sample Pairs A & B Sampling Locations	
Figure 1-3 Sample Pair C Sampling Location	
Figure 1-4 Fly Ash Sluicing Setup	1-5
Figure 1-5 Settling of Inert Particles (Fly Ash and Carbon)	
Figure 2-1 Sample Pair C After 1 Hour of Settling	
Figure 2-2 Sample Pair C After 12 Hours of Settling	
Figure 2-3 TSS as a Function of Overflow Rates (Sample Pairs A, B, and C)	2-2
Figure 2-4 Selenium Concentration with Overflow Rate (Sample Pair C)	
Figure 2-5 Boron Concentration (Sample Pairs A, B, and C)	2-5
Figure 2-6 Concentration of Bromide in Simulated Fly Ash Sluice Water After Settling for 1 Hour	2-6
Figure 2-7 Concentration of Bromide in Simulated Fly Ash Sluice Water as a Function of Time	2-6
Figure 2-8 Arsenic and Selenium Speciation in Simulated Fly Ash Sluice Water (Sample Pairs	
A and B)	2-8
Figure 2-9 Arsenic and Selenium Speciation in Simulated Fly Ash Sluice Water Sample A (With Car	rbon)
at Various Overflow Rates	2-8
Figure A-1 All Data for Sample Pairs A and B	
Figure A-2 All Data for Sample Pair C	
Figure A-3 As-Se Speciation of Sample Pairs A and B	

TABLES

Table 1-1 Sample Summary Information	1-ঃ
Table 1-2 Settling Times with Overflow Rate	1-€

ACRONYMS AND ABBREVIATIONS

ACI activated carbon injection

CAIR Clean Air Interstate Rule

CAMR Clean Air Mercury Rule

CCR coal combustion residues

cf/d cubic feet per day

EPA U.S. Environmental Protection Agency

ESP Electrostatic Precipitators

FAP fly ash pond

FGD flue gas desulfurization

lb/MMacf pounds per million actual cubic feet

mg/L milligrams per liter

mgd million gallons per day

ng/L nanograms per liter

NO, nitrogen oxides

PAC powdered activated carbon

PM particulate matter

SCR selective catalytic reduction

SO₂ sulfur dioxide

TSS total suspended solids

ug/L micrograms per liter

WQA Water Quality Association

1INTRODUCTION AND METHODOLOGY

The primary objective of this study was to investigate the effect of activated carbon injection (ACI) for flue gas mercury emission control on the composition of the fly ash sluice water and ash pond settling of the carbon byproduct. If the fly ash and spent carbon are wet sluiced to an ash pond, carbon particles that do not settle may be a compliance concern for total suspended solids (TSS), mercury as well as any other trace element that may be volatile in the flue gas and is adsorbed onto the carbon particle. A series of laboratory tests were conducted to simulate fly ash sluicing and then settling of solids in an ash pond.

Three pairs of fly ash were collected from two different power plants evaluating carbon injection for flue gas mercury control. Each pair consisted of one sample without carbon injection and one with carbon injection. The carbon, injected into the flue gas to remove mercury, is primarily removed with the fly ash in the ESP, and, therefore, the fly ash has a small amount of carbon mixed with it.

This technical memorandum presents:

- Background on Carbon Addition to the Air Stream
- Description of the Test Methodology
- Effect on Simulated Fly Ash Sluice Water and Ash Pond Effluent
 - o TSS
 - o Volatile Trace Elements
 - o Bromide
 - o Other Parameters
 - o Arsenic and Selenium Speciation

Carbon Addition to Air Stream

Regulations to decrease flue gas mercury emissions from coal power plants drive the need for emission control options such as activated carbon injection (ACI). At facilities using wet fly ash handling, the activated carbon will be primarily captured in the electrostatic precipitator or other particulate control device. If the fly ash/carbon mixture is wet sluiced to the ash pond, this could potentially impact the wastewater effluent.

During ACI, powdered activated carbon (PAC) is injected into the flue gas prior to the PM control device (typically ESP or fabric filter). The mercury binds with the carbon and the carbon is then captured in the PM control device. The ability for the mercury to bind to the carbon depends on numerous factors, including surface area and pore size of the carbon, temperature, and concentration of the mercury in the flue gas. [1]

Carbon, along with the volatile metals sorbed to it, is captured in the particulate control device along with the fly ash and, at facilities using wet ash handling, is typically sluiced to a fly ash pond (Figure 1-1). The objective of this study is to further understand specific effects that carbon

addition may have on the wastewater stream. To simulate the sluicing, this study included laboratory sluicing of fly ash samples with and without carbon injection.

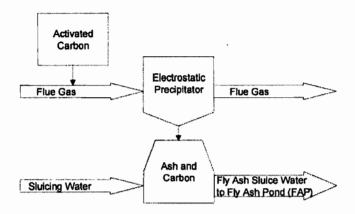


Figure 1-1
Schematic of Activated Carbon Injection for Mercury Control

Information about the samples, including coal type, ESP type, type of carbon injected, sample description, and date collected is shown in Table 1-1.

Sample Pairs A and B

This tangentially-fired power plant burned several coal blends while evaluating carbon injection for Hg control. Pair A was obtained while burning a 75/25 blend of eastern bituminous coals. This power plant employed a hot-side ESP with parallel paths, with only one path being evaluated for carbon injection while a second path did not employ carbon injection (Figure 1-2). Sample Pair B was obtained while burning a 75/25 blend of eastern bituminous coal and Powder River Basin (PRB) coal, respectively. At this site, a bromine-enhanced carbon was tested for Hg control.

Sample Pair C

This tangentially-fired power plant burned a high-sulfur eastern bituminous coal, and is configured with two sequential ESPs with specific collection areas of approximately 82 and 230 ft²/1000 acfm, respectively. Sample C (without carbon) was obtained from the second ESP on July 21, 2006, before any carbon had been injected. Sample C (with carbon) was obtained from the same second ESP on August 1, 2006, with carbon injection. The first ESP was estimated to have captured approximately 80 percent of the fly ash, while the second ESP captured 98.3 percent of the incoming fly ash (Figure 1-3). No information was provided about changes in coal supply that may or may not have occurred between sample dates. A number of carbons were tested at this power plant. Sample C was obtained during long-term tests using a HOK carbon without any halogen enhancement.

Table 1-1 Sample Summary Information

Sample	A	В	С
Coal Type	Blend of 75/25 Eastern Bituminous	Blend of 75% Eastern Bituminous & 25 % PRB	High Sulfur Eastern Bituminous
ESP Description	Hot Side-ESP	Hot-Side ESP	ESP in Series
Carbon Treatment	Bromine Enhanced	Bromine Enhanced	RWE Rheinbraun HOK carbon derived from German lignite No Chemical Treatment
Sample Description	(Without Carbon): U8 Fly Ash, No ACI, Inlet Hoppers 9F3 & 9F4, 50/50 Composite Grab	(Without Carbon) : U6 Fly Ash, No ACI, Inlet Hoppers 9F3 & 9F4, 50/50 Composite Grab	(Without Carbon) ESP2 Hopper 1 Composite Ash
	(With Carbon): U6 Fly Ash, A5B Absorbent, Inlet Hoppers 9F1 & 9F2, 50/50 Composite Grab	(With Carbon): U6 Fly Ash, A5B Absorbent, Inlet Hoppers 9F1 & 9F2, 50/50 Composite Grab	(With Carbon) HOK Carbon Injection 10.6 Ib/MMacf Composite Ash from ESP 2 Hopper 1 and 2
Date Collected	With and Without Carbon: 5/12/05	With and Without Carbon: 6/9/05	Without Carbon: 7/21/06 With Carbon: 8/1/06

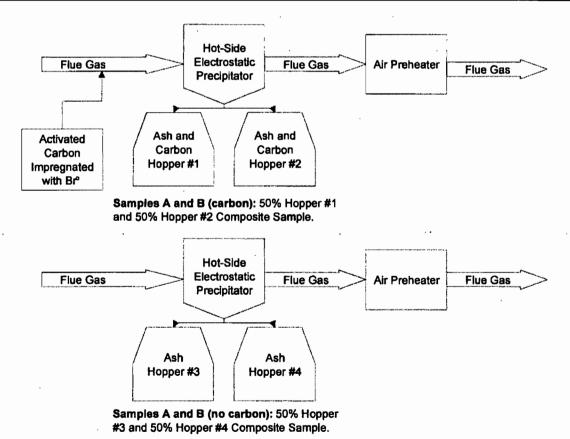


Figure 1-2
Sample Pairs A & B Sampling Locations

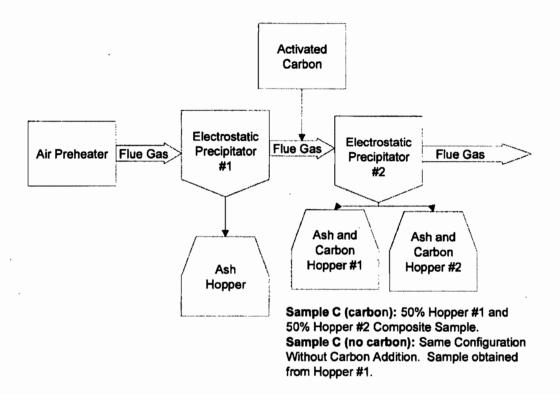


Figure 1-3 Sample Pair C Sampling Location

Description of Simulated Sluicing Methodology Used

The dry samples were mixed with water in a laboratory to simulate fly ash sluice water. The simulated sluice water was then allowed to settle to simulate settling that occurs in an ash pond; water samples were taken from the middle of the water column over time and analyzed.

Fly ash was collected at the stations from the air pollution control devices and shipped to the laboratory. Sluice water was collected from the river near the laboratory in Corvallis, Oregon. The ash and water (at a uniform concentration of 70 g/L to allow for cross-plant comparison) were mixed for 15 minutes with a re-circulating pump. In this type of process, carbon can be expected to comprise 1 to 10 percent of the sorbent-fly ash mixture based on sorbent injection concentrations in the range of 1.5 to 15 lb/MMacf [2] and therefore does not need to be subtracted from the quantity of fly ash collected. Figure 1-4 provides a photograph of the ash sluicing setup. Measurements of pH were taken on the plant intake water prior to mixing,

immediately after the 15-minute sluicing, and again after the 1-hour settling period. After 1 hour of settling, the supernatant was siphoned off for separation from the solid and analyzed.

Sample Pairs A and B (which include both samples with carbon and samples without carbon), from the same plant, were analyzed first. Lessons learned from their sluicing were incorporated into the sluicing of Sample Pair C (from a separate plant). Sample Pairs A and B were sluiced at room temperature. The procedure was repeated at low temperature (12.5 degrees C; 54.5 degrees F) to simulate cooler weather. Because the objective was to determine if carbon floated, the sluice water generated with ash and carbon were settled and analyzed at 1, 12, 36, and 72 hours. The simulated sluice water without carbon was not analyzed over time.

Sample Pair C (baseline and carbon) were both settled at the cooler temperature (12.5 degrees C; 54.5 degrees F) for consistency. Both the carbon and baseline (non-carbon) sluices were sampled and analyzed at 1, 12, 36, and 72 hours.

Figure 1-4
Fly Ash Sluicing Setup

To be useful to power plants to understand the effect of TSS in a given size pond, time of settling is combined with the distance settled to calculate settling velocity, which is then converted to "overflow rate." Overflow rate is the effluent flow rate (Q in cubic feet per day [cf/d] or million gallons per day [mgd]) divided by the surface area (A in square feet or acres) of the pond. Overflow rate represents the superficial liquid velocity at which particles are removed from the pond. Particles with this velocity or a higher settling velocity are removed completely in the pond. Slower particles are carried out of the pond and would add to the effluent TSS. This relationship is illustrated in Figure 1-5.

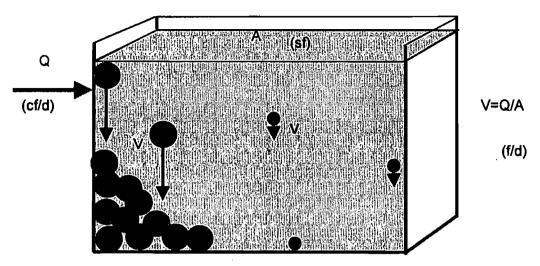


Figure 1-5 Settling of Inert Particles (Fly Ash and Carbon)

Table 1-2 shows the settling times for the samples and the associated overflow rates.

Table 1-2 Settling Times with Overflow Rate

	Sample A (With Carbon)	Sample B (With Carbon)	Sample C (No Carbon)	Sample C (With Carbon)
	mgd/acre	mgd/acre	mgd/acre	mgd/acre
1 hour	2.44	2.31	1.28	1.41
12 hours	0.18	0.16	0.11	0.13
36 hrs	0.04	0.05	0.03	0.04
72 hours	0.02	0.02	0.01	0.01

2 EFFECT ON SIMULATED FLY ASH SLUICE WATER AND ASH POND EFFLUENT

The samples were analyzed for TSS, mercury, selenium, boron, and bromide. Arsenic and selenium speciation was also conducted. Other parameters, that carbon should not affect, such as iron and magnesium, were also analyzed. The graphical results and interpretation of these analyses are described in this section. The complete data set is provided in the Appendix.

TSS

The limited data indicate that carbon injection into the flue gas does not significantly increase TSS concentrations in the simulated fly ash sluice water after a simulated settling that could be anticipated in an ash pond.

After 1 hour of settling (corresponding to an overflow rate of approximately 1.3 mgd/acre), much of the carbon is still suspended in the liquid (Figure 2-1). While at 1 hour of settling the sluice water is a dark brown shade, the TSS is actually similar to the TSS in the baseline sample. This is likely because while the TSS is darker in the fly ash sluice water with carbon, there are actually similar levels of suspended solids as in the baseline sluice water. Figure 2-2 shows that after 12 hours of settling (corresponding to an overflow rate of approximately 0.1 mgd/acre), the carbon has settled. At that overflow rate, the TSS was well below the typical 30 milligrams per liter (mg/L) TSS standard. Cenospheres and a small amount of carbon were observed to be floating on the top of the samples.

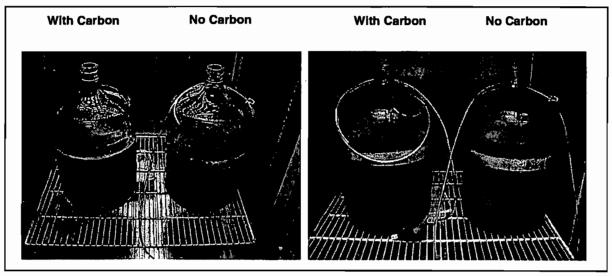


Figure 2-1 Sample Pair C After 1 Hour of Settiing

Figure 2-2
Sample Pair C After 12 Hours of Settling

A TSS concentration of 30 mg/L is a typical effluent regulatory requirement and therefore was selected as a reference TSS for the sample data. At 1 hour of settling, corresponding to approximately 2.3 mgd/acre, the simulated sluice samples with carbon had lower concentrations of TSS than the samples without carbon (Figure 2-3). Sample Pairs A and B without carbon were not sampled over time; therefore, it is not possible to compare the expected overflow rates for 30 mg/L TSS between the carbon and non-carbon pairs. For Sample Pair C, based on a least square fit of the non-carbon and carbon data, a TSS value of 30 mg/L would be expected at overflow rates of approximately 0.29 mgd/acre and 0.36 mgd/acre, respectively, indicating that the sample with carbon settled more rapidly than the sample without carbon (Figure 2-3). A value of half of the method detection limit was graphed for sample concentrations below the method detection limit.

It appears from this very limited data that the carbon does not have a significant effect on the concentration of TSS in the fly ash sluice water; the slightly improved settling of solids could be due to differences in fly ash. Future research with more samples would be needed to confirm the results.

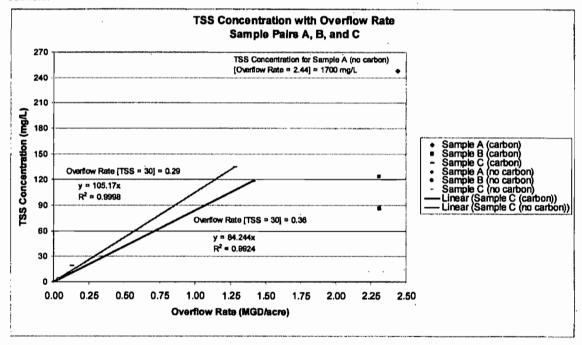


Figure 2-3
TSS as a Function of Overflow Rates (Sample Pairs A, B, and C)

Volatile Trace Elements

Carbon is injected into the flue gas predominantly to remove mercury. Other volatile trace elements may be adsorbed onto the carbon, removed from the flue gas stream, and eventually transferred via the carbon into the wastewater stream (fly ash sluice water). In this study, supernatant samples were analyzed after 1, 12, 36, and 72 hours of settling. The samples were analyzed for a variety of total metals, dissolved selenium and arsenic, bromide, and other

parameters. From the limited samples in this study, the carbon did not appear to have an effect on the mercury, selenium, or boron concentrations in the fly ash sluice water. The complete data set is included as Tables 1 and 2 in the Appendix of this report.

Mercury: Sample Pair C Fly Ash Sluice Water Sample (with and without carbon) at 1 hour of settling was analyzed at a clean laboratory using a method based on EPA Method 1631[3] with reportable limit of 0.5 nanograms per liter (ng/L). The fly ash sluice water with carbon had a mercury concentration of 3.3 ng/L. The fly ash sluice water without carbon had a concentration of 2.5 ng/L. It is not possible, from this limited data, to determine whether the difference between these low mercury concentrations is statistically significant, however, the low magnitude of the concentrations would suggest that mercury captured from the flue gas by the carbon is generally stable and does not leach out during the simulated sluicing process. Mercury concentrations in the fly ash samples were not determined, so a mass balance could not be conducted, however, this conclusion about leaching is consistent with previous EPRI, et.al research evaluating the stability of spent sorbent via leaching tests. A recent EPA study of leaching of mercury and other elements from coal combustion residues (CCR) with and without various carbon-based sorbents concluded that, "Mercury is strongly retained by the CCR and unlikely to be leached at levels of environmental concern." [6] Long-term fate of the mercury, such as mercury adsorbed to carbon that settled to the bottom of the pond, was not measured during this test. Mercury data were not obtained for Sample Pairs A and B, based on the agreement with the host utility. Additional research is recommended to further evaluate the observation made based on just one sample pair.

Selenium: The carbon addition appeared to have no significant effect on selenium concentration. Selenium concentration (dissolved and total) was non-detect (<30 ug/L) in Sample Pairs A and B. For Sample Pair C, the fly ash sluice water with carbon had similar selenium concentrations as the fly ash sluice water without carbon at different overflow rates (Figure 2-4). This held true for both dissolved and total selenium. The dissolved concentration of selenium is similar to the total concentration of selenium, indicating that selenium is predominantly dissolved. The concentration of selenium at different overflow rates was therefore steady (Figure 2-4).

Selenium Concentration with Overflow Rate Sample Pair C

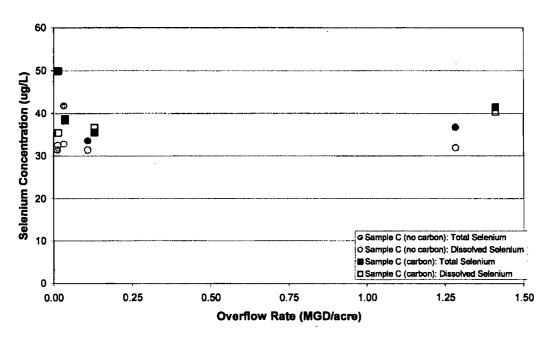


Figure 2-4
Seienlum Concentration with Overflow Rate (Sample Pair C)

Boron: The carbon addition appeared to have no conclusive effect on boron concentration. Like selenium, boron is primarily dissolved in water and therefore its concentration does not vary significantly with time or overflow rate. The samples with carbon had higher levels of boron in Sample Pairs A and B, but lower boron concentrations in Sample Pair C (see Figure 2-5). Based on this limited data set, the differences in the boron concentrations appear to be due to potential differences in the fly ash within the pair.

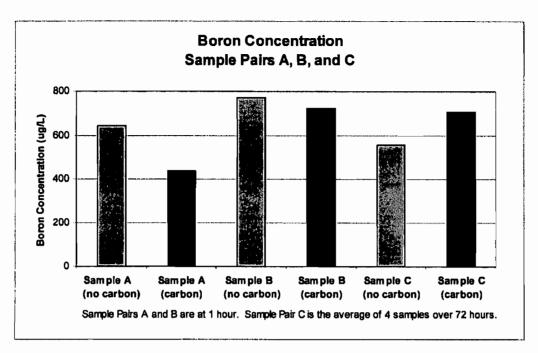


Figure 2-5
Boron Concentration (Sample Pairs A, B, and C)

Bromide

The carbon injected into the flue gas and collected with the fly ash from Sample Pairs A and B (samples with carbon) was reported by the facility to be bromine-treated activated carbon, while Sample C was activated carbon without halogen enhancement. Treating activated carbon with bromine may improve the mercury sorption performance of the carbon. In all three sample pairs, the bromide concentration in the sluice water was slightly higher (1 to 2 mg/L higher) from the ashes with the activated carbon. (Figure 2-6). Because Sample Pair C did not have halogen enhanced carbon, yet the bromide concentration increased in a similar manner as Sample Pairs A and B. It is possible that the increase in bromide concentration is due to something other than the halogen treatment of the carbon. A possible explanation is that the carbon adsorbed bromide from the flue gas, which is subsequently leached from the carbon. This is feasible because the 1 to 2 mg/L of bromide in the sluice water is a low enough that it could have originated from the bromide in the flue gas.

The concentration of bromide slightly increased with time in the simulated fly ash sluice water (Figure 2-7). For Figures 2-6 and 2-7, a value of half of the method detection limit was graphed for sample concentrations below the method detection limit.

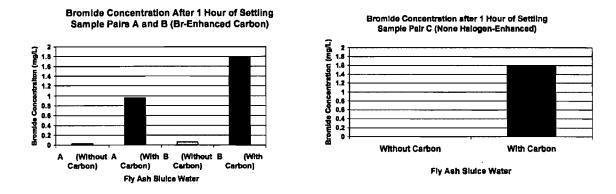


Figure 2-6
Concentration of Bromide in Simulated Fly Ash Sluice Water After Settling for 1 Hour

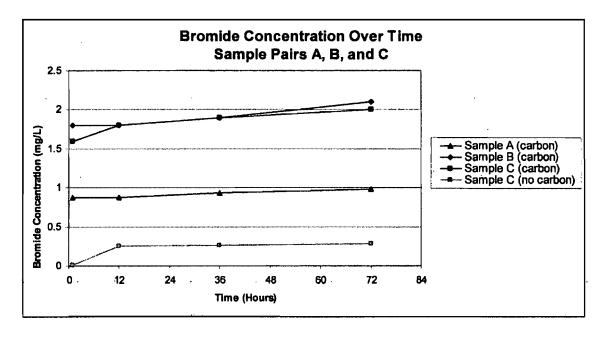
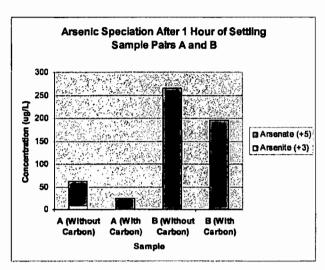


Figure 2-7
Concentration of Bromide in Simulated Fly Ash Sluice Water as a Function of Time

Other Parameters

The trace metal results for the other metals from Sample Pairs A and B would suggest a decrease in many of these metals. However, this was not observed in Pair C. The results are presented in the Appendix. Activated carbon is commonly used for removal of organic constituents from wastewater, among other uses. It is recognized as effective for use in drinking water applications for removal of organic arsenic and chromium complexes. However, it is not effective for use in removal of sodium, nitrates, fluoride, iron, lead, and other heavy metals. [4] Therefore, the

decreased levels of arsenic, iron, and aluminum in the carbon fly ash sluice water observed are most likely related to the variance in fly ash composition. Additional testing would be required to warrant assertions that other metals could be removed the carbon in the wastewater. One possible test would be to add "virgin" carbon (not exposed to flue gas) addition into the ash sluice water.


In this study, parameters such as sulfate, chloride, potassium, and magnesium were analyzed to determine how well the samples with and without carbon match as a pair. These parameters were not typically within 25 percent of each other (Tables 1 and 2 of the Appendix). Therefore, a portion of the difference in volatile metals and TSS could also be attributed to chemical differences in the fly ash samples within the pairs.

Arsenic and Selenium Speciation

The results of this study agreed with past fly ash sluice water data [5] in that selenium is predominantly selenite (+4) and arsenic is predominantly arsenate (+5) (Figure 2-8). Sample A (with carbon) was analyzed over time for arsenic and selenium speciation. Over time, the speciation remained predominantly selenite and arsenate (Figure 2-9). Arsenic and selenium were analyzed with ion chromatography – inductively coupled plasma – mass spectrometry (IC-ICP-MS). For Figures 2-8 and 2-9, a value of half of the method detection limit was graphed for sample concentrations below the method detection limit. This is important to note especially for selenate. The method detection limit of selenate was 1.4 ug/L and therefore graphed at 0.7 ug/L. Therefore this value may be lower than the graphic representation.

Selenite and selenate were the only species identified in the chromatograph for all of the samples. All the samples had an unidentified arsenic species with a concentration of less than 1 ug/L. This is a minimal amount compared to the concentration of arsenate (+5) ranging from 23.9 ug/L to 265 ug/L in the samples.

Selenite (+4) is more toxic than Se (+6) but is more easily removed through iron coprecipitation. Arsenate (+5) is more easily removed than arsenite (+3) by coprecipitation with ferric hydroxide. The complete arsenic and selenium speciation data for Sample Pairs A and B are included in the Appendix of this report in Table 3.

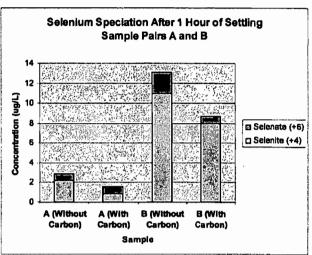
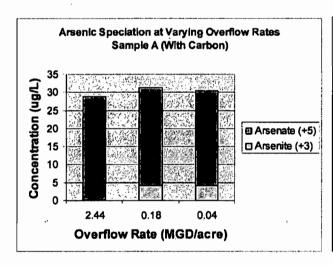



Figure 2-8
Arsenic and Selenium Speciation in Simulated Fly Ash Sluice Water (Sample Pairs A and B)

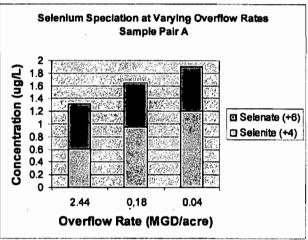


Figure 2-9
Arsenic and Selenium Speciation in Simulated Fly Ash Sluice Water Sample A (With Carbon) at Various Overflow Rates

3 RECOMMENDED FUTURE RESEARCH

Fly ash by nature is variable; therefore, it is important to obtain numerous samples to confirm that results are reproducible. This study included only three pairs of fly ash with and without carbon. While valuable preliminary conclusions were made from this research, the results should be confirmed with additional sample pairs. The recommended future research is described as follows.

- Of significant interest is whether the TSS and specifically the carbon particles are removed
 in the ash pond. Since the carbon particles may contain Hg, carbon particles that do not
 settle may be a compliance concern. Mercury is the main parameter targeted for removal
 from the flue gas via the carbon injection, and data from only one sample pair of mercury
 were available in this study. Thus additional data with mercury would be beneficial.
- The release of volatile metals from carbon is not likely to occur in aerobic water. In fact, carbon is used in water treatment to remove parameters from the water. However, under anaerobic conditions, mercury may be released from ash. Mercury has been shown to convert to soluble methyl mercury under anaerobic conditions in the bottom of streams containing organic sediments and mercury. When this conversion occurs, it causes a higher concentration of mercury than would be expected from inorganic mercury solubility. Fly ash ponds typically have very little organic material. However, the possibility exists that the decay of an algae bloom, due to ammonia levels, settled on the bottom of the pond could create an anaerobic condition a layered combination of algae and fly ash with carbon. A lab simulation could potentially involve alternate layers of harvested algae and ash and sparged with nitrogen to create an anaerobic environment. Samples of the gas could be taken for methane analysis to ensure an anaerobic environment exists and mercury concentration to measure any releases of volatile mercury. Samples of the water could be analyzed to understand if soluble forms of mercury are released.
- Additional research on the effect of carbon addition on the bromide in wastewater is recommended. The available data suggests that Br is removed from flue gas, some of which may be leached into the fly ash water.
- Another focus should be on the consistency of the pairs. Parameters that carbon should not
 affect, such as sulfate, chloride, potassium, and magnesium, should be compared after initial
 sluicing to determine if the carbon and non-carbon samples match as a pair.

4 REFERENCES

- 1. U.S. Environmental Protection Agency. (USEPA) February 2007. http://www.epa.gov/mercury/
- 2. Based on CH2M HILL analysis using a typical uncontrolled fly ash loading in the flue gas of ~1 grain/acf (204.154.137.14/publications/proceedings/99/99flyash/butz.pdf)
- 3. USEPA, Method 1631, Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry (August 2002) (EPA-821-R-02-019).
- 4. Water Quality Association. (WQA). February 2007. http://www.wqa.org/
- 5. PISCES Water Characterization Water Toxics Summary Report, EPRI, Palo Alto, CA: 2002. Product 1005409.
- 6. U.S. Environmental Protection Agency. (USEPA). February 2006. Characterization of Mercury-Enriched Coal Combustion Residues from Electric Utilities Using Enhanced Sorbents for Mercury Control. EPA-600/R-06/008.

	CI earmes	Sample A (no carbon).	Sample A (carbon)	Sample A (carbon)	Semple A	Sample A	Sample A	Sample B	Sample B	Sample B	Sample B	Sample B	Sample B (carbon)
製作的 Nating Time X 一次出版	2.50		海海 海海	5 4 C (S) 184	ST. (21.20)	**************************************	第一次		10 x	後の記事を	(3) 12 mg (3)	36	. 2
Overflow Rate	MGD/acre		**************************************		18.00 S	※ 70°0 ※	0.02		第57 多	.231	0.16	900	25.0.02 55.0.02
子質が発発や他他 Paramoter だら、・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	**************************************	新語。但由書類類	计划程度等 机 电	Sec. 22. 128.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	· 通過學院 11988	8.72.7522.w	· 是一日际都常均	16 3 18 2 18 18 18 18 18 18 18 18 18 18 18 18 18		12 18 18 18 18 18 18 18 18 18 18 18 18 18	· · · ** ***	100
Aluminum	из∕Г	28300	7920	33500	4060	628	342	8440	5680	6760	2010	1000	545
Arsenic (dissolved)	µg∕L	71.5	27.4	25.1	28.3	27.2	28	288	228	199	257	260	264
Arsenic (total)	µ9/L	117	43.7	70.4	38.4	31.7	36.2	292	248	259	259	274	269
Boron	ዞያሌ	643	439	514	451	432	429	177	720	713	681	999	680
Bromide	mg/L	0.028	96'0	98'0	98'0	0.93	0.98	0.084	1.8	1.8	1.8	1.9	2.1
Calclum	µg∕L	17400	13800	16400	15000	14900	15200	52300	51100	51100	50000	20700	51200
Iron	µ9/L	18800	2490	9870	1330	278	106	3010	1870	2330	633	251	112
Magnesium	µg∕L	0088	4570	6810	4540	4240	4370	929	6220	6300	5680	5630	5770
Manganese	µg∕L	127	49.6	91.1	50.3	4	43.5	17.1	16.5	18.2	<10	410	40
Potasslum	µg/L	25800	19200	22000	14700	14200	14000	15800	19200	19200	18200	18300	17700
Selenium (dissolved)	µg/L	06>	<30	0E>	06>	<30	<30	€30	8	<30	\$30	~30 ~30	8
Selenium (total)	Jug/L	<30	<30	œ>	<30	<30	<30	0E>	<30	<30	<30	<30	<30
Sodium	Pg/L	8520	8730	9310	9050	9850	9150	17500	19100	18800	18400	18400	18500
Acidity as CaCO3	mg/L	<10	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	10
Alkalinity, Total as CaCO3	mg/L	14	80	5		11	-	42	8	*	36	36	37
Alkalinity, Carbonate as CaCO3		\$	٧	8	\$	\$	Ą	18	9	00	œ	8	₩
Chloride	mg/L	2.2	2.9	2.7	2.6	2.6	2.6	2.5	3	3.1	3.1	3.4	3.2
Conductivity	µmHOS/cm	206	227	243	244	245	252	404	432	428	435	388	388
Hardness as CaCO3	mg/L		52						158	156	148	144	152
н	pH Units	7	6.5	7	6.8	7.1	7.2	9.1	8.8	6	8	8.7	8.7
Sulfate	mg/L	11	84.4	85.1	86.2	82.4	86.9	155	187	185	185	189	189
Total Dissolved Solids	mg/L	150	172	183	225	180	179	296	339	346	338	321	333
Total Suspended Solids	шауг	1700	248	921	100	21	\$	124	86.4	141	16	3.2	<2

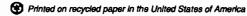
Figure A-2 Ali Data for Sample Pair C

Samole ID		Raw Wastewater	Sample C (no carbon)	Sample C (carbon)	Sample C (no	Sample C	Sample C (no	Sample C	Sample C (no	Sample C
Setting Time	hour			-	100 CONTRACTOR OF THE PARTY OF	12	88	38	72	7
Overflow Rate	MGD/acre	1556 F. P. S. S.	1.28	171	0.11	0.13	003	70.0	10,0	0.0
Parameter	Reporting Units									
Aluminum	hg/L	287	00851	6370	8510	1730	8310	1370	7880	1280
Arsenic (dissolved)	7/6rl	V	254	182	258	167	285	152	290	145
Arsenic (total)	µg/L	□	334	225	283	178	288	171	261	164
Boron	hg/L	<100	689	739	517	845	282	738	521	689
Bromide	mg/L	<0.02	<0.02	1.6	0.25	1.8	0.28	1,9	0.28	7
Calclum	hg/L	5760	78400	100000	77100	98100	78800	87500	77400	89300
Iron	pg/L	342	2940	2660	1810	320	1680	107	1580	4100
Magnesium	L pg/L	2130	5510	13200	5240	12500	9529	12900	5190	13100
Manganese	pg/L	21.7	230	219	212	199	211	203	205	204
Mercury	µg/L	<0.1	*\$Z00.0	*EEE00.0	<u>6</u> .	₽.0	40.1	1.9	6.1	6.
Potassium	hg/L	918	20300	19500	18900	19700	18900	19100	18800	18600
Selenium (dissolved)	hg/L	V	31.9	40.4	31.4	38.7	32.8	38.4	32.5	35.5
Selenium (total)	l µg/L	વ	36.8	41.4	33.6	35.6	41.8	38.7	31.4	49.9
Sodium	i µg∕L	5480	12200	17500	12600	16400	12700	17100	12000	17000
Acidity as CaCO3	mg/L	<10	23	11	51	11	52	11	52	10
Ammonia, as N	mg/L	0.11	1.9	2.2	1.9	2.4	2.1	2.4	2	2.3
Alkalinity, Bicarbonate as CaCO3	mg/L	28	\$>	80	\$	5	ý	ĸ	\$	6
Alkalinity, Total as CaCO3	mg/L	28	\$	∞	\$	9	\$	5	\$	9
Alkalinity, Carbonate as CaCO3	mg/L	\$	\$>	\$	Ŷ	\$	\$	٨	Ą	Å
Chloride	mg/L	2.3	3	5,5	3.4	6.3	3.5	6.5	3.6	9.6
Conductivity	µmHOS/cm	66.1	616	693	617	707	295	941	903	1684
PH	pH Units	7.2	4.4	5.8	4.5	5.8	4.7	6.1	4.6	9
Sulfate	mg/L				288	340	294	324	303	337
Total Inorganic Carbon	mg/L	6.2	2.1	2.6	0.83	. 2.2	0.59	1.9	0.51	1.6
Total Organic Carbon	mg/L	1.8	5.5	<0.5	5.6	<0.5	5.5	<0.5	5.9	<0.5
Total Dissolved Solids	mg/L	46	462	552	467	531	450	552	433	523
Total Suspended Solids	mg/L	8.2	135	118	10.8	19.2	2	4.4	2>	42
and and a family about a family										

ss:

Light blue highlight indicates 3 day activated carbon settling tests (3 days at coole temperature).

Export Control Restrictions


Access to and use of EPRI Intellectual Property is granted with the specific understanding and requirement that responsibility for ensuring full compliance with all applicable U.S. and foreign export laws and regulations is being undertaken by you and your company. This includes an obligation to ensure that any individual receiving access hereunder who is not a U.S. citizen or permanent U.S. resident is permitted access under applicable U.S. and foreign export laws and regulations. In the event you are uncertain whether you or your company may lawfully obtain access to this EPRI Intellectual Property, you acknowledge that it is your obligation to consult with your company's legal counsel to determine whether this access is lawful. Although EPRI may make available on a case-by-case basis an informal assessment of the applicable U.S. export classification for specific EPRI Intellectual Property, you and your company acknowledge that this assessment is solely for informational purposes and not for reliance purposes. You and your company acknowledge that it Is still the obligation of you and your company to make your own assessment of the applicable U.S. export classification and ensure compliance accordingly. You and your company understand and acknowledge your obligations to make a prompt report to EPRI and the appropriate authorities regarding any access to or use of EPRI Intellectual Property hereunder that may be in violation of applicable U.S. or foreign export laws or regulations.

The Electric Power Research Institute (EPRI)

The Electric Power Research Institute (EPRI), with major locations in Palo Alto, California; Charlotte, North Carolina; and Knoxville, Tennessee, was established in 1973 as an independent, nonprofit center for public interest energy and environmental research, EPRI brings together members, participants, the Institute's scientists and engineers, and other leading experts to work collaboratively on solutions to the challenges of electric power. These solutions span nearly every area of electricity generation, delivery, and use, including health, safety, and environment. EPRI's members represent over 90% of the electricity generated in the United States. International participation represents nearly 15% of EPRI's total research, development, and demonstration program.

Together...Shaping the Future of Electricity

© 2007 Electric Power Research Institute (EPRI), Inc. All rights reserved. Electric Power Research Institute, EPRI, and TOGETHER...SHAPING THE FUTURE OF ELECTRICITY are registered service marks of the Electric Power Research Institute, Inc.

1013314